TEMPERATURE FIELD IN METALS AFTER
IMPINGEMENT OF THERMAL FLUX PULSES
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The temperature field in a metal after impingement of high-power energy flux pulses is cal-
culated, assuming that the acquired energy dissipates deeper into the metal by conduction
and from the surface by radiation and convection, A solution is obtained in the form of as-
ymptotic series for long and short time periods.

A variety of technical applications requires that the temperature field in a metal after an impinge-
ment of thermal flux pulses be known, The energy stored in the hot layer dissipates here by traveling
deeper into the metal, by evaporating it, and by convection and radiation from its surface.

The corresponding two-dimensional thermophysics problem is, in the case of a semiinfinite body,
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With the aid of Green's function, we obtain the integral equation

o] K . _Lx_—_@i] [—ﬁ—g}i d
T, ) é f® {exp[ +exp ]}

2V nat 4ot dat

t : ) R
o T e o« P _b"j\ T (D) =0 s [_ x ]d, 5
b‘§ =i exp[ 4a(t~r)] ) Ve T w91 ®

where by = (oVa)/(A\Vm) and by = (ha)/(W7).

By approaching the limit x — 0, we arrive at a nonlinear singular equation
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where 6(t) = T(0, t) and where q(t) is determined by the temperature distribution at the initial instant of
time .
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A method has been developed in [1-2] of obtaining asymptotic expansions for an equation like (6) by analyz-
ing the principal parts of the poles of the Mellin-transformation equation.
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Applying the Mellin transformation
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to Eq. (6) yields
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where Q(s) is expressed in terms of the function F(s) = ,ff(g)gs‘idg, the Mellin transformant of the initial
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distribution f(x)
1

i st 5 1 )
§) = — == (4a F(——*s F(2s). 9
Q) Via (49) 5 ) (9
We will seek the asymptotic solution to (6) corresponding to short and long time periods respectively, in
the form of logarithmic-power series [2].

The singularities of the coefficients in (9) lie in the right-hand half-plane and, for this reason, the
structure of the solution in the left-hand half-plane depends only on the analytic behavior of F(s), The
physical meaning of this is that, at small values of the time variable, 8(7) depends only on the behavior of
f(x) at small values of x. If f(x) at small values of x is represented by a power series, then 8(t) can also
be sought in the form of a power series
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In the right-hand s-half-plane the poles of the coefficient function can be superposed on the poles of the
Mellin transformant of the unknown function. Such an increase in the multiplicity of poles is interpreted

in the procedure of [2] as the appearance of logarithmic factors in the coefficients of inverse-power ser-
ies, and the asymptoticity should be sought in the form
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where Ppy; (Int) is an m;~th power polynomial.

Let f(x) be an exponential relation. Such a temperature distribution occurs as a result of high-power
energy flux pulses (ablation of the surface [3], pulse discharge [4], radiant fluxes [5]), when the metal in
the active zone evaporates at a high rate and the evaporation front penetrates deeper at some stable veloc-
‘ ity v determined by the thermal flux density. The two-di-
mensional thermophysics problem for this case has been
. analyzed in [3-6], where it also has been shown that the

thermal field at the end of a rectangular pulse is described
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by the following expression:
NN - f) =T, exp(—px), (12)

\\ where 1/8 = a/v is the characteristic dimension of the hot
\\ surface and T, denotes the temperature at the evaporation
A front, the latter being determined from the law of energy
conservation, Numerical estimates in [7] indicate that
\ high-rate evaporation continues for an extremely short time
(<107° sec) after the end of a thermal flux pulse in the 10°
10'% W/m? range and that, to the first approximation, the
temperature distribution is given by the solution to problem
(1)-(4) with f(x) defined according to (12). For q(t) from (7)

%7 7 7ad Vi !t
Fig. 1. Variation W of surface temperza-
ture after end of pulse: I) 10'° W/m?2 II)

10° W/m?, without accounting for radia-
tion (a), with radiation accounted for (b).
Temperature T (°C), time t (sec).

and (12) or, based on the correspondence of the poles of
Q(s), from (9) respectively we have, considering the asymp
toticity of q(t)

t

765



q)~Tylay - oz - af +at/=4...), -0,

(13)
G) ~ Toldyt= /e - dt =" /e L dt=/s L df~"/r - ), - oo, 14
where
aG =1 ¢ =— 2_ (aP?)'/=; ay = af? a;= — 4 = (@, ...; d
Va - 3Vn t
_ 1 PR DR P 1
Va@= " 2Va @y 4Va @)
_ B 1 |
4 8 (aﬁz)’/z ’\ ..

In series (10) one easily discerns, according to (8) and (9), a half-powers sequence and, if series (10) is
written as
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then the coefficients of the asymptotic series are
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and the temperature field on the surface is
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Inserting (12) and (15) into (5) yields for T(x, t)
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where W /1 1/1) (x2/4at) is the Whittacker function (i = 3, 5, 7, ...).

Actual calculations have shown that the effect of convection is insignificant (of the order of 1%) even
during short time periods.

As to the asymptoticity during long time periods, an analysis of the poles of Eq. (8) shows that 8(t)
is
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Only the first term of this expansion needs to be evaluated:
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One determines it on the premise that, in accordance with the boundary condition (2) and the definition of
the Mellin interval, {b,T,(1) + b,T (1)} represents the total flux passing through the metal surface during the
time (0, ), i.e., the total flux charge P received by the metal during heating. Therefore, at the 5 = 1/2
pole of Eq. (8)
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The variation of surface temperature, with or without radiative heat losses taken into account, has
been calculated for thermal fluxes g = 10°-10'" W/m? and the results are shown in Fig. 1. The temperature
of the metal surface at the end of a pulse is determined from the solution to the thermophysics problem in
[8]. The most significant radiative losses in metals amount to 10-15% in terms of W.
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Thus the basic mechanism of energy dissipation after impingement of thermal flux pulses on a metal
appears to be evaporation in the first stage and then heat conduction, Radiative losses are comparable to
conductive losses at higher thermal flux densities,
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